# Ti Location in the MFI Framework of Ti-Silicalite-1: A Neutron Powder Diffraction Study

Carlo Lamberti,<sup>\*,†,‡</sup> Silvia Bordiga,<sup>†</sup> Adriano Zecchina,<sup>†</sup> Gilberto Artioli,<sup>§</sup> Gianluigi Marra,<sup>||</sup> and Guido Spanò<sup>||</sup>

Contribution from the Dipartimento di Chimica IFM, Università di Torino, Via P. Giuria 7, 10125 Torino, Italy, INFM Unità di Torino Università, Torino, Italy, Dipartimento di Scienze della Terra, Università di Milano, Via Botticelli 23, I-20133 Milano, Italy, and Centro CNR di Studio per la Geodinamica Alpina e Quaternaria, Via Mangiagalli 34, I-20133 Milano, Italy, and EniChem S.p.A. Centro Ricerche Novara, Istituto G. Donegani, Via G. Fauser 4, I-28100 Novara, Italy

Received October 12, 2000

**Abstract:** The first direct evidence that Ti atoms are not equally distributed in the 12 crystallographically independent T sites of the MFI framework is presented on the basis of neutron diffraction data collected at the HRPD instrument of the ISIS pulsed neutron source. We found strong evidence indicating that T6, T7, and T11 are the most populated sites and weak evidence that Ti may be hosted in T10. Ti occupancy can be excluded for sites T1, T2, T4, T5, T9, and T12. The occupancy of the remaining sites is doubtful. Since defective silicalite has been shown to exhibit the same preferential sites (T6, T7, T11, and T10) for Si vacancies, it may be suggested that the incorporation mechanism of the Ti atoms in the MFI framework occurs via the insertion of titanium in the defective sites. This hypothesis implies that titanium has a mineralizing effect on the MFI framework, and it is supported by independent spectroscopic data on both TS-1 and defective silicalite. The results are discussed in comparison with the known substitution mechanisms in the T-sites of MFI-type structures.

#### 1. Introduction

Ti-silicalite<sup>1</sup> (TS-1) shows a remarkable high efficiency and molecular selectivity in oxidation reactions employing H<sub>2</sub>O<sub>2</sub> under mild conditions such as the conversions of ammonia to hydroxylamine, of secondary alcohols to ketones, and of secondary amines to dialkylhydroxylamines or reactions such as the phenol hydroxylation, the olefin epoxidation, and the cyclohexanone ammoximation.<sup>1-8</sup> For these reasons TS-1 has become one of the most relevant industrial catalysts in the last 20 years. Silicalite, the parent Ti-free material with the same MFI topology, does not show a comparable activity, and therefore, the Ti atoms have been immediately designed as the catalytic centers of the material. The structural nature of Ti atoms in TS-1 has been lively debated in the eighties; titanyl groups, extraframework defect sites, monomeric and dimeric Ti species, and Ti species incorporated in edge-sharing units forming bridges across the zeolite channels have been inferred

- (2) Clerici, G. M. Appl. Catal. 1991, 08, 249. (3) Clerici, G. M.; Bellussi, G.; Romano, U. J. Catal. 1991, 129, 159.
- (4) Bellussi, G.; Carati, A.; Clerici, G. M.; Maddinelli, G.; Millini, R. J.
- Catal. 1992, 133, 220.

(7) Mantegazza, M. A.; Leofanti, G.; Petrini, G.; Padovan, M.; Zecchina, A.; Bordiga, S. Stud. Surf. Sci. Catal. 1994, 82, 541.

(8) Mantegazza, M. A.; Petrini, G.; Spanò, G.; Bagatin, R.; Rivetti, F. J. Mol. Catal. A **1999**, 146, 223.

by different authors. The same holds for the local geometry, where Ti species having tetrahedral, square pyramidal, or octahedral coordination have been suggested.

The origin of the initial confusion was related to the difficulty encountered in the synthesis of well-manufactured TS-1, which requires the use of extremely pure reagents and careful control in the synthesis conditions.<sup>1</sup> Characterization of imperfectly synthesized samples leads to misinterpretation of structural and spectroscopic data. There is now a large consensus that Ti atoms are incorporated into MFI framework in [TO<sub>4</sub>] sites substituting silicon atoms.<sup>9,10</sup> In particular, the model of isomorphous substitution has been put forward on the basis of several independent characterization techniques, namely XRD,<sup>11,12</sup> IR (Raman),<sup>13–17</sup> UV–vis,<sup>17,18</sup> EXAFS, and XANES.<sup>19–25</sup> It has also been shown that the catalytic activity of the Ti site, in several partial oxidation reactions, is related to the fraction of

- (10) Vayssilov, G. N. Catal. Rev.-Sci. Eng. 1997, 39, 209.
- (11) Millini, R.; Previdi Massara, E.; Perego, G.; Bellussi, G. J. Catal. **1992**, *137*, 497.
- (12) Lamberti, C.; Bordiga, S.; Zecchina, A.; Carati, A.; Fitch, A. N.; Artioli, G.; Petrini, G.; Salvalaggio, M.; Marra, G. L. *J. Catal.* **1999**, *183*, 222.
- (13) Tozzola, G.; Mantegazza, M. A.; Ranghino, G.; Petrini, G.; Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Zulian, R.; Zecchina, A. J. Catal. 1998, 179, 64.
- (14) Boccuti, M. R.; Rao, K. M.; Zecchina, A.; Leofanti G.; Petrini, G. Stud. Surf. Sci. Catal. **1989**, 48, 133.
- (15) Zecchina, A.; Spoto, G.; Bordiga, S.; Padovan, M.; Leofanti, G. Stud. Surf. Sci. Catal. 1991, 65, 671.
- (16) Scarano, D.; Zecchina, A.; Bordiga, S.; Geobaldo, F.; Spoto, G.; Petrini, G.; Leofanti, G.; Padovan, M.; Tozzola, G. J. Chem. Soc., Faraday Trans. **1993**, *89*, 4123.
- (17) Zecchina, A.; Spoto, G.; Bordiga, S.; Ferrero, A.; Petrini, G.; Padovan, M.; Leofanti, G. *Stud. Surf. Sci. Catal.* **1991**, *69*, 251.

(18) Blasco, T.; Camblor, M.; Corma, A.; Pérez-Parriente, J. J. Am. Chem. Soc. 1993, 115, 11806.

<sup>\*</sup> To whom correspondence should be addressed: Tel. +39011-6707841. Fax: +39011-6707855. E-mail: lamberti@ch.unito.it.

<sup>&</sup>lt;sup>†</sup> Dipartimento di Chimica IFM, Università di Torino.

<sup>&</sup>lt;sup>‡</sup> INFM Unità di Torino.

<sup>&</sup>lt;sup>§</sup> Dipartimento di Scienze della Terra Università di Milano and Centro CNR Milano.

<sup>&</sup>quot;EniChem Novara.

Taramasso, M.; Perego, G.; Notari, B. U.S. Patent No. 4410501, 1983.
 Clerici, G. M. Appl. Catal. 1991, 68, 249.

<sup>(5)</sup> Notari, B. Adv. Catal. 1996, 41, 253 and references therein.

<sup>(6)</sup> Roffia, P.; Leofanti, G.; Cesana, A.; Mantegazza, M. A.; Padovan, M.; Petrini, G.; Tonti, S.; Gervasutti, P. *Stud. Surf. Sci. Catal.* **1990**, *55*, 543.

<sup>(9)</sup> Millini, R.; Perego, G. Gazz. Chim. Ital. 1996, 126, 133.

tetrahedral Ti atoms incorporated in TS-1.<sup>8</sup> Moreover, theoretical studies have shown that the isomorphous insertion of Ti atoms in the zeolitic lattice is energetically favored.<sup>26–30</sup> Although the local geometry of the Ti sites has been satisfactorily clarified, the distribution of the Ti atoms over the 12 symmetry-independent T sites of MFI framework is still open to debate. This is an important problem, since the localization of Ti atoms may play an important role in understanding the catalytic properties of the material.

Unfortunately, the extremely small dimensions of TS-1 crystals do not permit the use of the more informative singlecrystal technique, and all direct structural information has been to date derived from powder diffraction. Moreover, the low fraction of Ti atoms that can be inserted into the MFI framework (about 3 TiO<sub>2</sub> wt %)<sup>11</sup> makes the experimental localization of the Ti atoms from X-ray diffraction measurements very difficult. For these reasons the most interesting speculations concerning Ti distribution are to date based on computational chemistry results.<sup>26–34</sup>

The first theoretical contribution to the debate (Jentys and Catlow<sup>26</sup>) used defect energy minimization and quantum mechanical cluster computation to study the isomorphous Ti substitution in monoclinic MFI. The obtained distances are very close to those experimentally found by EXAFS experiments on well-manufactured TS-1 samples.<sup>19-22,24,25</sup> The authors conclude that, among the 24 different T sites, no clear preferential site was emerging from the energy calculation. Millini et al.<sup>27</sup> reached the same conclusion concerning orthorhombic MFI on the basis of local density functional quantum mechanical calculations on pentameric Ti(OSiO<sub>3</sub>H<sub>3</sub>)<sub>4</sub> cluster. The authors of ref 27 used a fixed cluster geometry, closely conforming to the geometry of the MFI framework. By substituting Ti in the 12 different T sites of the orthorhombic cell, they found a relatively small spread of energy and conclude in favor of an homogeneous distribution of the heteroatom. The obtained Ti-O distance (1.80 Å) was in full agreement with EXAFS data.19,20-22,24,25

- (19) Bordiga, S.; Coluccia, S.; Lamberti, C.; Marchese, L.; Zecchina, A.; Boscherini, F.; Buffa, F.; Genoni, F.; Leofanti, G.; Petrini, G.; Vlaic, G. J. Phys. Chem. **1994**, *98*, 4125.
- (20) Bordiga, S.; Boscherini, F.; Coluccia, S.; Genoni, F.; Lamberti, C.; Leofanti, G.; Marchese, L.; Petrini, G.; Vlaic, G.; Zecchina, A. *Catal. Lett.* **1994**, *26*, 195.
- (21) Pei, S.; Zajac, G. W.; Kaduk, J. A.; Faber, J.; Boyanov, B. I.; Duck, D.; Fazzini, D.; Morrison T. I.; Yang, D. S. *Catal. Lett.* **1993**, *21*, 333.
- (22) Le Noc, L.; Trong On, D.; Solomykina, S.; Echchahed, B.; Béland, F.; Cartier dit Moulin, C.; Bonneviot, L. *Stud. Surf. Sci. Catal.* **1996**, *101*, 611.
- (23) Zecchina, A.; Bordiga, S.; Lamberti, C.; Ricchiardi, G.; Scarano, D.; Petrini, G.; Leofanti, G.; Mantegazza, M. *Catal. Today* **1996**, *32*, 97.
- (24) Lamberti, C.; Bordiga, S.; Arduino, D.; Zecchina, A.; Geobaldo, F.; Spanò, G.; Genoni, F.; Petrini, G.; Carati, A.; Villain, F.; Vlaic, G. *J. Phys. Chem. B* **1992**, *102*, 6382.
- (25) Gleeson, D.; Sankar, G.; Catlow, C. R. A.; Thomas, J. M.; Spanó, G.; Bordiga, S.; Zecchina, A.; Lamberti, C. *Phys. Chem. Chem. Phys.* **2000**, 2, 4812.
- (26) Jentys, A.; Catlow, C. R. A. Catal. Lett. 1993, 22, 251.
- (27) Millini, R.; Perego, G.; Seiti, K. Stud. Surf. Sci. Catal. 1994, 84, 2123.
- (28) de Mann, A. J. M.; Sauer, J. J. Phys. Chem. 1996, 100, 5025.
- (29) Sinclair, P. E.; Sankar, G.; Catlow, C. R. A.; Thomas, J. M.; Maschmeyer, T. J. Phys. Chem. B **1997**, 101, 4237. (b) Sinclair, P. E.; Catlow, C. R. A. J. Phys. Chem. B **1999**, 103, 1084.
- (30) Zicovich-Wilson, C. M.; Dovesi, R.; Corma, A. J. Phys. Chem. B 1999, 103, 988.
- (31) Oumi, Y.; Matsuba, K.; Kubo, M.; Inui, T.; Miyamoto, A. Microporous Mater. 1995, 4, 53.
- (32) Smirnov, K. S.; van de Graaf, B. *Microporous Mater.* 1996, 7, 133.
  (33) Njo, S. L.; van Koningsveld, H.; van de Graaf, B. *J. Phys. Chem.* B 1997, 101, 10065.
- (34) Ricchiardi, G.; de Man, A.; Sauer, J. Phys. Chem. Chem. Phys. 2000, 2, 2195.

Oumi et al.<sup>31</sup> investigated the isomorphic substitution of Ti into the orthorhombic MFI framework using a molecular dynamics (MD) approach. The interesting result of their work is the claim that the lattice parameter expansion along the three crystallographic axes is related to a specific substituted site. They report the increment of the cell a, b, and c parameters assuming that all Ti atoms are incorporated into a single T site and conclude that only substitution into the T8 site is compatible with the experimentally measured  $\Delta a$ ,  $\Delta b$ , and  $\Delta c$  reported by the group of Perego.<sup>11</sup> On the other hand, the possibility of Ti distribution into different sites, resulting in a linear combination of the corresponding  $\Delta a$ ,  $\Delta b$ , and  $\Delta c$  values, has not be considered by the authors and the equilibrium Ti-O distance reported by Oumi et al.<sup>31</sup> (1.85 Å) is substantially larger than the experimental value observed by EXAFS.19-22,24,25 In a subsequent MD work Smirnov and van de Graaf32 did not found any correlation between the unit cell expansion and the Ti location. More recently, Njo et al.<sup>33</sup> reported a study based on combined Metropolis Monte Carlo and molecular dynamics. Following previous EXAFS results<sup>19,20,21</sup> they adopt a force field where the Ti-O bond is simulated by a harmonic potential with a minimum at 1.80 Å and a force constant of 211 N/m. The authors<sup>33</sup> arbitrarily locate 5 Ti atoms in a double unit cell (effectively approaching the experimental limit of x = 0.025; see ref 11) and optimize the lattice geometry and the Ti, Si distribution over 192 T sites (5 Ti and 187 Si) using a MD approach. Each T site distribution is inductively generated from the previous configuration by random exchange of Ti with a Si atom. The new distribution is geometrically optimized and accepted if its energy is lower than that of the previous configuration. If not, its Boltzman probability  $w = \exp[\Delta E/kT]$ is compared with a randomly generated number n, where 0 <n < 1. If w > n the new distribution is accepted, otherwise the system returns to the previous Ti, Si distribution. Following this approach, Njo et al.<sup>33</sup> have found T2 and T12 as preferential sites for Ti substitution, while T8 (suggested as preferential site from MD calculation in ref 31) is among the less populated sites. It should also be noted that the lattice expansion  $\Delta a$ ,  $\Delta b$ , and  $\Delta c$  computed by MD calculation<sup>31</sup> for Ti insertion in sites T2 and T12 (suggested as preferential sites in ref 33) are not compatible with the experimental values reported by the group of Perego.<sup>11</sup>

Finally, the most recent results obtained by Sauer and coworkers<sup>34</sup> highlight how all previous computational results, performed by simulating the zeolite structure in a vacuum (i.e. without adsorbed water molecules), ought to be considered with caution. The effect of hydration must in fact be considered when discussing insertion of Ti in the framework sites because, in the presence of water, the variations in the site stabilization energy among different Ti substituted T sites are substantially larger (up to 40 kJ mol<sup>-1</sup>) than in the anhydrous case. The ranking of the substituted T sites on the basis of the computed energy changes extensively if hydration is taken into account.

It is clear that the available theoretical data at present do not provide a definite answer to the problem of the existence of preferential insertion of Ti in the MFI framework and that the experimental evidence is also very limited. <sup>49</sup>Ti and <sup>47</sup>Ti NMR studies<sup>35,36</sup> have been performed, but they are of difficult interpretation because of the large quadrupolar moment of both nuclei. Also <sup>29</sup>Si MAS NMR spectroscopy, usually widely employed in the characterization of zeolites because of its

<sup>(35)</sup> Berger, S.; Bock, W.; Marth, C.; Raguse, B.; Reetz, M. Magn. Reson. Chem. 1990, 28, 559.

<sup>(36)</sup> Lopez, A.; Tuilier, M.; Guth, J.; Delmotte, L.; Popa, J. Solid State Chem. 1993, 102, 480.

sensitivity to the atoms attached to the oxygens of the [SiO<sub>4</sub>] units, has provided much less information when applied to study the nature of Ti sites in TS-1. In fact, unlike the ZSM-5 zeolite and B-silicalite cases, where Si atoms having one Al or B atom in the second coordination shell ([Si(OSi)<sub>3</sub>OAl] and [Si-(OSi)<sub>3</sub>OB]) show well-identified NMR lines, the influence of titanium in the framework position neighboring tetrahedral silicon atoms [Si(OSi)<sub>3</sub>OTi] results only in a shoulder at about -115 ppm in the <sup>29</sup>Si MAS spectrum.<sup>22,37</sup> Moreover, since a similar shoulder was also observed for [Si(OSi)<sub>3</sub>OH] units in defective silicalite with a high density of Si vacancies,<sup>22,38</sup> an unambiguous assignment in the -115 ppm shoulder in the <sup>29</sup>Si MAS NMR spectra to Ti only cannot be done.<sup>22,39</sup> It is in fact worth recalling that TS-1 is a rather defective material, hosting Si vacancies generating internal hydroxyl groups; vide infra section 4.2. In this regard it is worth recalling the contribution of the group of Bonneviot,<sup>22</sup> reporting an <sup>1</sup>H MAS NMR attempt to distinguish TiOH groups from SiOH in TS-1. Very recently, Laborian et al.40 have reported an original 29Si MAS NMR study of different titanosilicates, where Ti4+ species have been previously reduced to the paramagnetic Ti<sup>3+</sup> species by treatment in CO. The Fermi contact interaction between the unpaired electron of Ti<sup>3+</sup> species and the <sup>29</sup>Si nucleus allows one to extract information on titanium; in particular, the authors claim that the reduction of the NMR signal is proportional to the number of paramagnetic Ti<sup>3+</sup> species.

The results of adsorption microcalorimetry experiments have recently been reported by Bolis et al.<sup>41,42</sup> using NH<sub>3</sub> as a probe. They reported that the evolution of the heat of adsorption with coverage of ammonia at the Ti(IV) sites was typical of heterogeneous surfaces. The authors interpreted this result as an indirect evidence that Ti is either randomly distributed among the 12 crystallographically independent T sites of the orthorhombic MFI cell or it is preferentially located in some of the sites, discarding the hypothesis of a single preferred substitutional site.

To provide a definite answer to the problem, we recently reported the attempt to directly locate the Ti atoms using XRPD data collected at the high-resolution powder diffraction beam line (BM16) of the ESRF (European Synchrotron Radiation Facility).<sup>12</sup> The high photon flux emitted by a bending magnet of the ESRF at  $\lambda = 0.85018$  Å allowed us to collect high-quality data on a set of different TS-1 samples down to 0.85 Å in d spacing. Our goal was to detect any significant increase of charge density in the T sites, as expected on the basis of the higher Z of Ti with respect to Si ( $\Delta Z = 8$ ). This is possible in principle only if all Ti atoms are partitioned in a single crystallographic site. Different refinement strategies have been adopted in order to reliably recognize a significant titanium occupancy  $x_i$  (being that of silicon of the same site constrained to  $1 - x_i$ : i = 1 to 12) in some of the T sites. In some of the samples, a few sites yielded an apparent  $x_i$  value significant at the  $3\sigma$  level or higher (in particular T6 and T11), but it was clear that the resulting  $x_i$  value was strategy dependent. This was not surprising, since a correlation between the  $x_i$  parameters and the Si, Ti Debye–Waller factors is always expected. The fact that the probable preferred T sites were found to be different in the different samples, and even in the same sample subject to different thermal treatment, led us to deduce that residual non statistical errors were affecting the data analysis. It was inferred that either high-resolution XRPD is not sensitive enough to identify preferred substituted T sites, because of the insufficient electron density contrast between Si and Ti and the low Ti content, or else Ti is randomly distributed over most of the 12 T sites.

The present work relies on the large contrast existing between the neutron coherent scattering lengths of Ti and Si  $[b_c(Ti) =$ -3.438(2) fm;  $b_c(Si) = +4.149(1)$  fm] and attempts the location of the Ti atoms in the framework sites of three well-characterized TS-1 samples by high-resolution time-of-flight neutron powder diffraction.

## 2. Experimental Section

To avoid any bias due to the refinement performed on diffraction data collected on a single sample, two high-Ti-loaded samples prepared in two different syntheses (A and B) were employed (in both cases the original patent<sup>1</sup> has been followed. Template (tetrapropylammonium) removal has been performed by calcinating the samples in air flux up to 550 °C. The successive TGA up to 850 °C do not reveal any measurable trace of organic molecules, indicating that the template decomposition has been virtually complete. In the products of both syntheses the insertion of Ti in the MFI framework was preliminarily checked by IR, UV-vis, and XANES spectroscopy (data are not reported here for brevity). The amount of framework Ti(x) was evaluated by measuring the cell volume and using the following empirical equation:<sup>12</sup> V = 2093x + 5335.8 Å<sup>3</sup>. The cell volume of the samples dehydrated at 120 °C was extracted by full-profile analysis of XRPD collected on a laboratory Bruker D5005 instrument equipped with Göbel mirrors. The calculated number of incorporated Ti atoms/ unit cell were 2.09 and 2.64 for synthesis A and B, respectively. These values are, within the experimental errors, in agreement with the chemical analysis data, reporting 2.06(5) and 2.66(5) Ti atoms/unit cell for samples A and B, respectively. By comparing the cell volume obtained by XRD and elemental analysis data, we conclude that virtually all titanium is to be considered structurally inserted in the framework.

For the neutron measurements, about 3 cm<sup>3</sup> of TS-1 obtained from each synthesis was dehydrated at 120 °C and then sealed in a glass vial under vacuum (hereafter labeled samples A120 and B120). To measure a third set of diffraction data on an independent sample, a further 3 cm<sup>3</sup> of TS-1 obtained from synthesis A has been treated in a vacuum at 500 °C and then sealed in a glass vial (hereafter named sample A500). The three sample vials were successively loaded in the sample holder of the High-Resolution Powder Diffractometer (HRPD) at the Intense Spallation Isotope Source (ISIS), Rutherford Appleton Laboratory, Didcot, U.K. HRPD offers excellent resolution throughout the diffraction pattern ( $\Delta d/d \simeq (4-5) \times 10^{-4}$ ). Data were accumulated on each sample at room temperature for about 24 h in order to obtain high-quality statistics. Two ZnS scintillator banks at 168 and 90° with respect to the incident beam were used. The data from the 90° bank were used in the time-of-flight range 35-120 ms (corresponding to the range 1.01-3.45 Å in d space) and those from the  $168^{\circ}$  bank in the time-of-flight range 43–118 ms (0.88–2.45 Å in d space). The two independently measured powder patterns for each sample were simultaneously analyzed using the full-profile Rietveld method. Detector calibration, source-to-sample distance, and starting peak profile parameters were obtained by careful refinement of the powder diffraction data of reference BaF2 collected using identical experimental conditions.

The goals pursued in this experiment are extremely challenging due to the low concentration of Ti; therefore, a reduction of the thermal contribution to the atomic displacement parameters would be very useful in the detection of any possible preferential substitution site. The experimental temperature therefore ought to be as low as possible, but carefully selected, to avoid the observed orthorhombic to monoclinic phase transition,<sup>43</sup> which implies a decrease in the lattice symmetry, a doubling of the symmetrically independent T sites, and the halving of

<sup>(37)</sup> Kraushaar, B.; van Hoof, J. H. C. Catal. Lett. 1988, 1, 81.

<sup>(38)</sup> Van der Pol, A. J. H. P.; van Hoof, J. H. C. Appl. Catal. A 1992, 92, 93.

<sup>(39)</sup> Labourian, A.; Higley, T. J.; Earl, W. L. J. Phys. Chem. B 1998, 102, 2897.

<sup>(40)</sup> Labourian, A.; Ott, K. C.; Rau, J.; Earl, W. L. J. Phys. Chem. B **2000**, *104*, 5890.

<sup>(41)</sup> Bolis, V.; Bordiga, S.; Lamberti, C.; Zecchina, A.; Petrini, G.; Rivetti, F.; Spanò, G. *Langmuir* **1999**, *155*, 753.

<sup>(42)</sup> Bolis, V.; Bordiga, S.; Lamberti, C.; Zecchina, A.; Petrini, G.; Rivetti F.; Spanò, G. *Microporous Mesoporous Mater.* **1999**, *30*, 67.

**Table 1.** First Part, Cell Volume (XRPD from Laboratory Data) and Deduced Framework Ti Content for TS-1 Coming from Syntheses A and B, Activated at 120 °C, and Sealed on a Boron Silicate Capillary and, Second Part, Neutron Data Collection Details and Rietveld Refinement Parameters Referred to the 0 Refinement Strategy<sup>*a*</sup>

| XRPD from Laboratory Data on Samples Activated at 120 °C and |                 |            |            |  |  |  |  |  |  |  |
|--------------------------------------------------------------|-----------------|------------|------------|--|--|--|--|--|--|--|
| Sealed on a Boron Silicate Capillary                         |                 |            |            |  |  |  |  |  |  |  |
| sample                                                       | A120            | B120       | B120       |  |  |  |  |  |  |  |
| cell vol $V(Å^3)$                                            | 5379.5(8)       | 5391       | 91.1(9)    |  |  |  |  |  |  |  |
| Ti content (atoms/cell)                                      | 2.09            | 2.64       |            |  |  |  |  |  |  |  |
| Neutron Data Collected                                       | ) Instrument at | t ISIS     |            |  |  |  |  |  |  |  |
| sample                                                       | A120            | A500       | B120       |  |  |  |  |  |  |  |
| <i>T</i> (K)                                                 | 298             | 298        | 298        |  |  |  |  |  |  |  |
| ToF range (ms), 168° bank                                    | 43-118          | 42-118     | 43-118     |  |  |  |  |  |  |  |
| ToF range (ms), 90° bank                                     | 35-120          | 35-120     | 36-118     |  |  |  |  |  |  |  |
| cell                                                         |                 |            |            |  |  |  |  |  |  |  |
| a (Å)                                                        | 20.1135(2)      | 20.0715(3) | 20.1282(3) |  |  |  |  |  |  |  |
| <i>b</i> (Å)                                                 | 19.9300(3)      | 19.9074(3) | 19.9449(3) |  |  |  |  |  |  |  |
| <i>c</i> (Å)                                                 | 13.4098(2)      | 13.3853(2) | 13.4195(3) |  |  |  |  |  |  |  |
| cell vol $V(Å^3)$                                            | 5375.47(9)      | 5348.4(1)  | 5387.3(1)  |  |  |  |  |  |  |  |
| space group                                                  | Pnma            | Pnma       | Pnma       |  |  |  |  |  |  |  |
| tot. no. of refined params                                   | 157             | 157        | 157        |  |  |  |  |  |  |  |
| Rwp                                                          | 0.0229          | 0.0251     | 0.0216     |  |  |  |  |  |  |  |
| Rp                                                           | 0.0197          | 0.0218     | 0.0188     |  |  |  |  |  |  |  |
| reduced χ2                                                   | 3.325           | 2.383      | 2.450      |  |  |  |  |  |  |  |
| expected Rwp                                                 | 0.0126          | 0.0163     | 0.0138     |  |  |  |  |  |  |  |
| $R 168^{\circ}$ bank                                         | 0.0647          | 0.0785     | 0.0485     |  |  |  |  |  |  |  |
| <i>R</i> 90° bank                                            | 0.1206          | 0.1717     | 0.0883     |  |  |  |  |  |  |  |
| tot. no. exptl points                                        | 5870            | 5946       | 5781       |  |  |  |  |  |  |  |

 $^a\,{\rm For}$  the definition of the quality factors we refer to the GSAS manual.  $^{45}$ 

the mean detectable Ti content of each site. It is worth reminding that, due to such effects, in an analogous neutron powder diffraction study aimed to detect T vacancies in defective MFI-silicalite,44 the framework defects could be located in the orthorhombic phase (measured at room temperature) but not on the monoclinic one (measured at 100 K). For this reason we performed a preliminary temperature-dependent diffraction study at the BM16 beam line of ESRF to define the orthorhombic ↔ monoclinic phase transition in a high-Ti-loaded TS-1 sample.43 The transition temperature was found to occur around 160 K in the dehydrated sample, and therefore, any experiment aimed to locate the Ti atoms in the MFI framework should be performed above this temperature. We estimated that the reduction of the thermal displacement parameters expected by cooling the samples from 300 to 170 K would not yield a substantial advantage over the effective reduction of signal-to-noise ratio caused by the cryogenic equipment. Measurements were thus performed at room temperature.

IR measurements were performed on the same samples at nominally room temperature. Thin self-supporting wafers of TS-1 were prepared and activated in a vacuum at 120 °C, inside an IR cell allowing in situ measurements to be made. The IR spectra were recorded at 2 cm<sup>-1</sup> resolution in transmission mode on a FTIR 2000 Perkin-Elmer equipped with MCT detector cooled at 77 K with liquid nitrogen.

#### 3. Results and Refinement Methods

The Rietveld analysis was performed using the GSAS software system.<sup>45</sup> The peak profiles were modeled by a convolution of a double-exponential and a switch function<sup>46</sup> with a pseudo-Voigt function; the Lorentzian breadth of the peak fwhm is parametrized as  $\gamma = \gamma_0 + \gamma_1 d_{hkl} + \gamma_2 d_{hkl}^2$  and the Gaussian breadth as  $\sigma = \sigma_0 + \sigma_1 d_{hk}l^2 + \sigma_2 d_{hkl}^4$ . Given the large number of structural parameters, the refinement was started by



**Figure 1.** Observed (crosses), calculated (solid upper line), and difference (solid lower line) powder diffraction patterns for sample B120. Data from the HRPD detector bank at  $90^{\circ}$ .



**Figure 2.** Observed (crosses), calculated (solid upper line), and difference (solid lower line) powder diffraction patterns for sample B120. Data from the HRPD detector bank at 168°.

imposing severe constraints on the T-O bond distances. The weights of the constraints were progressively released at convergence, being completely removed in the final cycle. Furthermore the isotropic atomic displacement parameters of all T (i.e. Si or Ti) and O sites were constrained to be equal, thus limiting the number of refined atomic displacement parameters to two. The instrumental background was modeled by a Chebyshev polynomial with 18 coefficients to refine. In the final cycles all atomic coordinates (110 parameters), 2 isotropic atomic displacement parameters, the cell parameters (resulting in a total of 115 structural parameters), 18 coefficients of the background modeling function, 1 scale factor, and 2 peak profile coefficients ( $\sigma_1$  and  $\gamma_2$ ) for each histogram (resulting in a total of 42 nonstructural parameters) were simultaneously refined. This number, 157 independent parameters, holds for the first minimization cycles, where the presence of titanium was ignored and the MFI structure of each sample was refined with the T sites fully occupied by Si atoms, hereafter labeled as refinement 0. The insertion of Ti atoms in the model implies the addition of up to 12 supplementary occupation parameters depending on the adopted refinement strategy. Detailed strategies of the refinement of site occupancy factors are discussed below.

The second part of Table 1 lists the details of the data collection and Rietveld refinements. Figures 1 and 2 show the observed, calculated, and difference powder diffraction spectra for the final refinements of the data relative to sample B120.

<sup>(43)</sup> Marra, G. L.; Artioli, G.; Fitch, A. N.; Milanesio, M.; Lamberti, C. *Microporous Mesoporous Mater.* **2000**, *40*, 85.

<sup>(44)</sup> Artioli, G.; Lamberti, C.; Marra, G. L. Acta Crystallogr. B 2000, 56, 2.

<sup>(45)</sup> Larson, A. C.; Von Dreele, R. B. *Report No. LAUR-68-748*; Los Alamos National Laboratory: Los Alamos, NM, 1999.

<sup>(46)</sup> Ikeda, S.; Carpenter J. M. Nucl. Inst. Methods Phys. Res. A 1985, 239, 536.

Table 2. Refined Atomic Fractional Coordinates, Atomic Displacement Parameters, and Average Si–O Distance or Average Si–O–Si Angle for the Three TS-1 Samples Referred to the 0 Refinement Strategy

| atom                                                           | sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х                                                                                                                                                                                                                                                                                                                                   | У                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                                                                                                                                                                                                                                                                                              | $100 U_{\rm iso} ({\rm \AA}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mean Si-O (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Si(1)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4246(5)                                                                                                                                                                                                                                                                                                                           | 0.0569(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.3313(6)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4255(6)                                                                                                                                                                                                                                                                                                                           | 0.0550(6)                                                                                                                                                                                                                                                                                                                                                                   | 0.3325(7)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4249(6)                                                                                                                                                                                                                                                                                                                           | 0.0559(6)                                                                                                                                                                                                                                                                                                                                                                   | 0.3331(6)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(2)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3083(5)                                                                                                                                                                                                                                                                                                                           | 0.0295(4)                                                                                                                                                                                                                                                                                                                                                                   | 0.1859(6)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3088(6)                                                                                                                                                                                                                                                                                                                           | 0.0272(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.1830(8)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3090(5)                                                                                                                                                                                                                                                                                                                           | 0.0291(4)                                                                                                                                                                                                                                                                                                                                                                   | 0.1846(7)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(3)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2779(4)                                                                                                                                                                                                                                                                                                                           | 0.0612(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0336(6)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2780(5)                                                                                                                                                                                                                                                                                                                           | 0.0617(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0362(7)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>6</b> 1/40                                                  | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2779(5)                                                                                                                                                                                                                                                                                                                           | 0.0621(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0338(7)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(4)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1194(4)                                                                                                                                                                                                                                                                                                                           | 0.0622(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0298(6)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1192(5)                                                                                                                                                                                                                                                                                                                           | 0.0641(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0278(7)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0:(5)                                                          | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1197(5)                                                                                                                                                                                                                                                                                                                           | 0.0622(5)                                                                                                                                                                                                                                                                                                                                                                   | 0.0285(6)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| S1(5)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0728(5)                                                                                                                                                                                                                                                                                                                           | 0.0288(4)                                                                                                                                                                                                                                                                                                                                                                   | -0.1868(6)                                                                                                                                                                                                                                                                                                                                                     | 2.0/(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0726(6)                                                                                                                                                                                                                                                                                                                           | 0.0298(5)                                                                                                                                                                                                                                                                                                                                                                   | -0.1890(7)                                                                                                                                                                                                                                                                                                                                                     | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>S</b> ;(6)                                                  | A 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0723(3)<br>0.1803(5)                                                                                                                                                                                                                                                                                                              | 0.0289(5)<br>0.0616(4)                                                                                                                                                                                                                                                                                                                                                      | -0.1883(7)<br>-0.2250(6)                                                                                                                                                                                                                                                                                                                                       | 2.10(4)<br>2.07(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 31(0)                                                          | A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1893(3)<br>0.1917(6)                                                                                                                                                                                                                                                                                                              | 0.0010(4)<br>0.0638(5)                                                                                                                                                                                                                                                                                                                                                      | -0.3239(0)<br>-0.3240(8)                                                                                                                                                                                                                                                                                                                                       | 2.07(3)<br>2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | R120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1917(0)<br>0.1907(5)                                                                                                                                                                                                                                                                                                              | 0.0038(3)                                                                                                                                                                                                                                                                                                                                                                   | -0.3240(8)<br>-0.3248(7)                                                                                                                                                                                                                                                                                                                                       | 2.19(3)<br>2 10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(7)                                                          | Δ120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1907(5)<br>0.4225(5)                                                                                                                                                                                                                                                                                                              | -0.1752(4)                                                                                                                                                                                                                                                                                                                                                                  | -0.3240(7)                                                                                                                                                                                                                                                                                                                                                     | 2.10(4)<br>2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.590(2)<br>1 597(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 51(7)                                                          | A 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.4225(3)<br>0.4247(7)                                                                                                                                                                                                                                                                                                              | -0.1738(4)                                                                                                                                                                                                                                                                                                                                                                  | -0.3252(8)                                                                                                                                                                                                                                                                                                                                                     | 2.07(3)<br>2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.4241(6)                                                                                                                                                                                                                                                                                                                           | -0.1745(4)                                                                                                                                                                                                                                                                                                                                                                  | -0.3232(0)                                                                                                                                                                                                                                                                                                                                                     | 2.19(3)<br>2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(8)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3072(5)                                                                                                                                                                                                                                                                                                                           | -0.1294(4)                                                                                                                                                                                                                                                                                                                                                                  | -0.1850(6)                                                                                                                                                                                                                                                                                                                                                     | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51(0)                                                          | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3118(7)                                                                                                                                                                                                                                                                                                                           | -0.1325(5)                                                                                                                                                                                                                                                                                                                                                                  | -0.1860(7)                                                                                                                                                                                                                                                                                                                                                     | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3112(6)                                                                                                                                                                                                                                                                                                                           | -0.1302(5)                                                                                                                                                                                                                                                                                                                                                                  | -0.1852(6)                                                                                                                                                                                                                                                                                                                                                     | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(9)                                                          | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2729(5)                                                                                                                                                                                                                                                                                                                           | -0.1754(3)                                                                                                                                                                                                                                                                                                                                                                  | 0.0324(7)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2751(5)                                                                                                                                                                                                                                                                                                                           | -0.1748(4)                                                                                                                                                                                                                                                                                                                                                                  | 0.0333(8)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2744(5)                                                                                                                                                                                                                                                                                                                           | -0.1747(3)                                                                                                                                                                                                                                                                                                                                                                  | 0.0332(8)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(10)                                                         | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1206(5)                                                                                                                                                                                                                                                                                                                           | -0.1718(2)                                                                                                                                                                                                                                                                                                                                                                  | 0.0355(7)                                                                                                                                                                                                                                                                                                                                                      | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1230(5)                                                                                                                                                                                                                                                                                                                           | -0.1728(3)                                                                                                                                                                                                                                                                                                                                                                  | 0.0348(8)                                                                                                                                                                                                                                                                                                                                                      | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1219(5))                                                                                                                                                                                                                                                                                                                          | -0.1724(3)                                                                                                                                                                                                                                                                                                                                                                  | 0.0328(8)                                                                                                                                                                                                                                                                                                                                                      | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(11)                                                         | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0702(5)                                                                                                                                                                                                                                                                                                                           | -0.1289(5)                                                                                                                                                                                                                                                                                                                                                                  | -0.1766(6)                                                                                                                                                                                                                                                                                                                                                     | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0725(7)                                                                                                                                                                                                                                                                                                                           | -0.1260(6)                                                                                                                                                                                                                                                                                                                                                                  | -0.1761(7)                                                                                                                                                                                                                                                                                                                                                     | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0721(6)                                                                                                                                                                                                                                                                                                                           | -0.1272(5)                                                                                                                                                                                                                                                                                                                                                                  | -0.1783(7)                                                                                                                                                                                                                                                                                                                                                     | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Si(12)                                                         | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1848(4)                                                                                                                                                                                                                                                                                                                           | -0.1729(3)                                                                                                                                                                                                                                                                                                                                                                  | -0.3219(7)                                                                                                                                                                                                                                                                                                                                                     | 2.07(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1862(6)                                                                                                                                                                                                                                                                                                                           | -0.1728(3)                                                                                                                                                                                                                                                                                                                                                                  | -0.3193(8)                                                                                                                                                                                                                                                                                                                                                     | 2.19(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.595(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.18/5(5)                                                                                                                                                                                                                                                                                                                           | -0.1726(3)                                                                                                                                                                                                                                                                                                                                                                  | -0.3195(8)                                                                                                                                                                                                                                                                                                                                                     | 2.10(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.596(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atom                                                           | sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | х                                                                                                                                                                                                                                                                                                                                   | у                                                                                                                                                                                                                                                                                                                                                                           | Z                                                                                                                                                                                                                                                                                                                                                              | $100 U_{\rm iso} ({\rm \AA}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Si-O-Si angle (deg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0(1)                                                           | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3778(6)                                                                                                                                                                                                                                                                                                                           | 0.0483(9)                                                                                                                                                                                                                                                                                                                                                                   | 0.2361(9)                                                                                                                                                                                                                                                                                                                                                      | 4 18(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 151 6(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0(1)                                                           | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3761(7)                                                                                                                                                                                                                                                                                                                           | 0.0454(9)                                                                                                                                                                                                                                                                                                                                                                   | 0.2403(10)                                                                                                                                                                                                                                                                                                                                                     | 4.99(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157.9(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3775(7)                                                                                                                                                                                                                                                                                                                           | 0.0456(9)                                                                                                                                                                                                                                                                                                                                                                   | 0.2391(9)                                                                                                                                                                                                                                                                                                                                                      | 4.24(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 155.0(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(2)                                                           | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3076(8)                                                                                                                                                                                                                                                                                                                           | 0.0613(7)                                                                                                                                                                                                                                                                                                                                                                   | 0.0768(6)                                                                                                                                                                                                                                                                                                                                                      | 4.18(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148.6(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3070(10)                                                                                                                                                                                                                                                                                                                          | 0.0606(9)                                                                                                                                                                                                                                                                                                                                                                   | 0.0747(7)                                                                                                                                                                                                                                                                                                                                                      | 4.99(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 149.3(13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                | B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3078(8)                                                                                                                                                                                                                                                                                                                           | 0.0610(7)                                                                                                                                                                                                                                                                                                                                                                   | 0.0762(6)                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 140 2(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(3)                                                           | A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     | 0.0019(7)                                                                                                                                                                                                                                                                                                                                                                   | 0.0702(0)                                                                                                                                                                                                                                                                                                                                                      | 4.24(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148.3(11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.1987(4)                                                                                                                                                                                                                                                                                                                           | 0.0652(6)                                                                                                                                                                                                                                                                                                                                                                   | 0.0283(7)                                                                                                                                                                                                                                                                                                                                                      | 4.24(5)<br>4.18(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148.3(11)<br>174.1(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                | A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)                                                                                                                                                                                                                                                                                                              | 0.0613(7)<br>0.0652(6)<br>0.0603(8)                                                                                                                                                                                                                                                                                                                                         | 0.0283(7)<br>0.0302(8)                                                                                                                                                                                                                                                                                                                                         | 4.24(5)<br>4.18(5)<br>4.99(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148.3(11)<br>174.1(9)<br>175.9(12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                | A500<br>B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)                                                                                                                                                                                                                                                                                                 | 0.0652(6)<br>0.0603(8)<br>0.0662(6)                                                                                                                                                                                                                                                                                                                                         | 0.0283(7)<br>0.0302(8)<br>0.0274(8)                                                                                                                                                                                                                                                                                                                            | 4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 148.3(11)<br>174.1(9)<br>175.9(12)<br>173.2(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| O(4)                                                           | A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)                                                                                                                                                                                                                                                                                    | 0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)                                                                                                                                                                                                                                                                                                                            | 0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)                                                                                                                                                                                                                                                                                                               | 4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| O(4)                                                           | A500<br>B120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)                                                                                                                                                                                                                                                                       | 0.0612(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)                                                                                                                                                                                                                                                                                                  | 0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)                                                                                                                                                                                                                                                                                                  | 4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11) \\156.8(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| O(4)                                                           | A500<br>B120<br>A120<br>A500<br>B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0.1987(4) \\ 0.1986(5) \\ 0.1989(5) \\ 0.1004(5) \\ 0.0986(6) \\ 0.1018(6) \\ 0.1018(6) \end{array}$                                                                                                                                                                                                              | 0.0612(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)                                                                                                                                                                                                                                                                                     | 0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)                                                                                                                                                                                                                                                                                     | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.24(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11) \\156.8(14) \\158.5(13) \\147.6(10) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) \\158.5(13) $ |
| O(4)<br>O(5)                                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.1987(4) \\ 0.1986(5) \\ 0.1989(5) \\ 0.1004(5) \\ 0.0986(6) \\ 0.1018(6) \\ 0.1172(5) \\ 0.1198(7) \end{array}$                                                                                                                                                                                                 | 0.0612(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0560(9)                                                                                                                                                                                                                                                                        | 0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)                                                                                                                                                                                                                                                                        | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.24(5) \\ 4.18(5) \\ 4.09(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $149.9(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(4)<br>O(5)                                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1182(6)                                                                                                                                                                                                                   | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0584(9)\\ 0.0550(9)\\ 0.0535(11)\\ 0.0512(10)\\ \end{array}$                                                                                                                                                                                                        | 0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)                                                                                                                                                                                                                                                           | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11) \\156.8(14) \\158.5(13) \\147.6(10) \\148.9(12) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) \\149.2(11) $ |
| O(4)<br>O(5)                                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)                                                                                                                                                                                                      | 0.0617(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)                                                                                                                                                                                                                                            | $\begin{array}{c} 0.01283(7)\\ 0.0283(7)\\ 0.0302(8)\\ 0.0274(8)\\ 0.0856(6)\\ 0.0873(7)\\ 0.0871(7)\\ 0.2767(8)\\ 0.2793(9)\\ 0.2792(8)\\ 0.27426(0)\end{array}$                                                                                                                                                                                              | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.18(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11) \\156.8(14) \\158.5(13) \\147.6(10) \\148.9(12) \\149.3(11) \\152.6(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) \\149.3(12) $ |
| O(4)<br>O(5)<br>O(6)                                           | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2468(6)<br>0.2468(7)                                                                                                                                                                                         | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0584(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(0)\end{array}$                                                                                                                                                                                               | $\begin{array}{c} 0.0183(7) \\ 0.0283(7) \\ 0.0302(8) \\ 0.0274(8) \\ 0.0856(6) \\ 0.0873(7) \\ 0.0871(7) \\ 0.2767(8) \\ 0.2793(9) \\ 0.2792(8) \\ 0.2436(9) \\ 0.2411(10) \end{array}$                                                                                                                                                                       | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $148.3(11) \\174.1(9) \\175.9(12) \\173.2(10) \\156.8(11) \\156.8(14) \\158.5(13) \\147.6(10) \\148.9(12) \\149.3(11) \\153.6(13) \\152.9(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| O(4)<br>O(5)<br>O(6)                                           | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)                                                                                                                                                                            | 0.0612(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0560(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0625(8)                                                                                                                                                                                                     | $\begin{array}{c} 0.0183(7) \\ 0.0283(7) \\ 0.0302(8) \\ 0.0274(8) \\ 0.0856(6) \\ 0.0873(7) \\ 0.0871(7) \\ 0.2767(8) \\ 0.2793(9) \\ 0.2792(8) \\ 0.2436(9) \\ 0.2411(10) \\ 0.2440(10) \end{array}$                                                                                                                                                         | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(4)<br>O(5)<br>O(6)<br>O(7)                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>B120<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)                                                                                                                                                               | 0.0615(7)<br>0.0652(6)<br>0.0603(8)<br>0.0662(6)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0560(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0626(8)<br>-0.1570(8)                                                                                                                                                                                       | $\begin{array}{c} 0.01283(7)\\ 0.0302(8)\\ 0.0274(8)\\ 0.0856(6)\\ 0.0873(7)\\ 0.0871(7)\\ 0.2767(8)\\ 0.2793(9)\\ 0.2792(8)\\ 0.2436(9)\\ 0.2411(10)\\ 0.2440(10)\\ 0.2302(10)\\ \end{array}$                                                                                                                                                                 | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.9(5) \\ 4.24(5) \\ 4.18(5) \\ 4.9(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148.3(11) $174.1(9)$ $175.9(12)$ $175.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| O(4)<br>O(5)<br>O(6)<br>O(7)                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)                                                                                                                                                  | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\end{array}$                                                                                                                                             | $\begin{array}{c} 0.0183(7)\\ 0.0283(7)\\ 0.0302(8)\\ 0.0274(8)\\ 0.0856(6)\\ 0.0873(7)\\ 0.0871(7)\\ 0.2767(8)\\ 0.2793(9)\\ 0.2792(8)\\ 0.2436(9)\\ 0.2411(10)\\ 0.2440(10)\\ 0.2302(10)\\ 0.2279(11)\\ \end{array}$                                                                                                                                         | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148.3(11) $174.1(9)$ $175.9(12)$ $175.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O(4)<br>O(5)<br>O(6)<br>O(7)                                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>B120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)                                                                                                                                                  | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1670(8)\\ -0.1601(8)\\ \end{array}$                                                                                                                                         | $\begin{array}{c} 0.0183(7)\\ 0.0302(8)\\ 0.0274(8)\\ 0.0856(6)\\ 0.0873(7)\\ 0.0871(7)\\ 0.2767(8)\\ 0.2793(9)\\ 0.2792(8)\\ 0.2436(9)\\ 0.2411(10)\\ 0.2440(10)\\ 0.2302(10)\\ 0.2279(11)\\ 0.2275(11)\\ \end{array}$                                                                                                                                        | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.24(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148.3(11) $174.1(9)$ $175.9(12)$ $175.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)                           | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)                                                                                                                                     | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1670(8)\\ -0.1601(8)\\ -0.1537(5)\end{array}$                                                                                                                               | $\begin{array}{c} 0.0283(7)\\ 0.0302(8)\\ 0.0274(8)\\ 0.0856(6)\\ 0.0873(7)\\ 0.0871(7)\\ 0.2767(8)\\ 0.2793(9)\\ 0.2792(8)\\ 0.2436(9)\\ 0.2411(10)\\ 0.2440(10)\\ 0.2302(10)\\ 0.2279(11)\\ 0.2275(11)\\ 0.0716(6) \end{array}$                                                                                                                              | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)                           | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3069(11)                                                                                                                       | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\\ -0.1601(8)\\ -0.1537(5)\\ -0.1550(7)\end{array}$                                                                                                      | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)                                                                                                                                  | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)                           | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3051(10)                                                                                                                       | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\\ -0.1601(8)\\ -0.1537(5)\\ -0.1550(7)\\ -0.1545(6)\end{array}$                                                                                                     | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)                                                                                                                     | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)                                                                                                         | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\\ -0.1601(8)\\ -0.1537(5)\\ -0.1550(7)\\ -0.1545(6)\\ -0.1512(5)\end{array}$                                                                            | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0315(9)                                                                                                                     | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\ 4.98(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.1004(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3059(9)<br>0.3059(11)<br>0.3051(10)<br>0.1993(5)                                                                                            | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\\ -0.163(8)\\ -0.1537(5)\\ -0.1550(7)\\ -0.1545(6)\\ -0.1512(5)\\ -0.1508(6)\\ \end{array}$                                                                                     | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0287(11)                                                                                                       | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.29(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)                   | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0086(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)<br>0.1985(5)                                                                               | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0560(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1601(8)\\ -0.1637(5)\\ -0.1537(5)\\ -0.1550(7)\\ -0.1545(6)\\ -0.1512(5)\\ -0.1508(6)\\ -0.1518(5)\\ \end{array}$                                                           | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0346(10)                                                                                                       | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\ 4.24(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)<br>O(10)          | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)<br>0.1985(5)<br>0.0858(7)                                                                               | $\begin{array}{c} 0.0615(7)\\ 0.0652(6)\\ 0.0603(8)\\ 0.0662(6)\\ 0.0603(7)\\ 0.0622(9)\\ 0.0584(9)\\ 0.0535(11)\\ 0.0512(10)\\ 0.0617(8)\\ 0.0623(9)\\ 0.0623(9)\\ 0.0626(8)\\ -0.1570(8)\\ -0.1613(8)\\ -0.1601(8)\\ -0.1537(5)\\ -0.1550(7)\\ -0.1550(7)\\ -0.1545(6)\\ -0.1512(5)\\ -0.1508(6)\\ -0.1518(5)\\ -0.1616(6)\\ \end{array}$                                 | 0.0283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.2797(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0287(11)<br>0.0346(10)<br>-0.0705(8)                                                              | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\ 4.18(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$ $158.6(10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)<br>O(10)          | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)<br>0.1993(5)<br>0.1985(5)<br>0.0876(8)                                                     | 0.0615(7)<br>0.0652(6)<br>0.0603(8)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0623(9)<br>0.0626(8)<br>-0.1570(8)<br>-0.1613(8)<br>-0.1601(8)<br>-0.1537(5)<br>-0.1550(7)<br>-0.1545(6)<br>-0.1512(5)<br>-0.1512(5)<br>-0.1518(5)<br>-0.1616(6)<br>-0.1593(8)                                                        | 0.0783(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2436(9)<br>0.2436(9)<br>0.2411(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0287(11)<br>0.0346(10)<br>-0.0705(8)<br>-0.0701(9)                                                | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$ $158.6(10)$ $159.5(13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)<br>O(10)          | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3069(11)<br>0.3051(10)<br>0.1972(5)<br>0.1993(5)<br>0.1985(5)<br>0.0876(8)<br>0.0857(7)<br>0.192(5)                            | 0.0615(7)<br>0.0652(6)<br>0.0603(8)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0623(9)<br>0.0626(8)<br>-0.1570(8)<br>-0.1613(8)<br>-0.1601(8)<br>-0.1537(5)<br>-0.1550(7)<br>-0.1545(6)<br>-0.1512(5)<br>-0.1518(5)<br>-0.1518(5)<br>-0.1593(8)<br>-0.1559(7)                                                        | 0.0783(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.2797(8)<br>0.2793(9)<br>0.2792(8)<br>0.2410(10)<br>0.2440(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0287(11)<br>0.0287(11)<br>0.0287(11)<br>0.0346(10)<br>-0.0705(8)<br>-0.0701(9)<br>-0.0712(9)                  | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $175.9(12)$ $173.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$ $158.6(10)$ $159.5(13)$ $159.5(13)$ $159.5(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)<br>O(10)<br>O(11) | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>A50<br>B120<br>A500<br>B120<br>A500<br>B120<br>A500<br>B120<br>B120<br>A500<br>B120<br>B120<br>B120<br>B120<br>B120<br>B120<br>B120<br>B1 | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3050(9)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)<br>0.1993(5)<br>0.1985(5)<br>0.0858(7)<br>0.0876(8)<br>0.0857(7)<br>0.1183(6) | 0.0615(7)<br>0.0652(6)<br>0.0603(8)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0580(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0623(9)<br>0.0626(8)<br>-0.1570(8)<br>-0.1613(8)<br>-0.1601(8)<br>-0.1537(5)<br>-0.1550(7)<br>-0.1545(6)<br>-0.1512(5)<br>-0.1518(5)<br>-0.1518(5)<br>-0.1593(8)<br>-0.1593(8)<br>-0.1515(8)<br>-0.1575(6)               | 0.0783(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2411(10)<br>0.2440(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0287(11)<br>0.0346(10)<br>-0.0705(8)<br>-0.0701(9)<br>-0.2652(10)                                | 4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.18(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.24(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)<br>4.99(5)                                                                                                                                                                                                                             | 148.3(11) $174.1(9)$ $175.9(12)$ $175.9(12)$ $175.2(10)$ $156.8(11)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$ $158.6(10)$ $159.5(13)$ $159.7(12)$ $156.2(15)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| O(4)<br>O(5)<br>O(6)<br>O(7)<br>O(8)<br>O(9)<br>O(10)<br>O(11) | A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A500<br>B120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A120<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1987(4)<br>0.1986(5)<br>0.1989(5)<br>0.0986(6)<br>0.1018(6)<br>0.1172(5)<br>0.1188(7)<br>0.1183(6)<br>0.2466(6)<br>0.2488(7)<br>0.2489(7)<br>0.3753(7)<br>0.3805(8)<br>0.3791(8)<br>0.3050(9)<br>0.3050(9)<br>0.3059(11)<br>0.3051(10)<br>0.1972(5)<br>0.1985(5)<br>0.0858(7)<br>0.0858(7)<br>0.0857(7)<br>0.1183(5)<br>0.1181(7) | 0.0615(7)<br>0.0652(6)<br>0.0603(8)<br>0.0603(7)<br>0.0622(9)<br>0.0584(9)<br>0.0535(11)<br>0.0512(10)<br>0.0617(8)<br>0.0623(9)<br>0.0623(9)<br>0.0626(8)<br>-0.1570(8)<br>-0.1613(8)<br>-0.1601(8)<br>-0.1537(5)<br>-0.1550(7)<br>-0.1545(6)<br>-0.1512(5)<br>-0.1518(5)<br>-0.1518(5)<br>-0.1518(5)<br>-0.1518(5)<br>-0.1518(8)<br>-0.1593(8)<br>-0.155(9)<br>-0.1564(0) | 0.01283(7)<br>0.0283(7)<br>0.0302(8)<br>0.0274(8)<br>0.0856(6)<br>0.0873(7)<br>0.0871(7)<br>0.2767(8)<br>0.2793(9)<br>0.2792(8)<br>0.2413(10)<br>0.2440(10)<br>0.2302(10)<br>0.2279(11)<br>0.2275(11)<br>0.0716(6)<br>0.0718(7)<br>0.0723(7)<br>0.0315(9)<br>0.0287(11)<br>0.0346(10)<br>-0.0705(8)<br>-0.0701(9)<br>-0.2652(10)<br>-0.2631(21)<br>-0.2631(11) | $\begin{array}{c} 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.24(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.18(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\ 4.99(5) \\$ | 148.3(11) $174.1(9)$ $175.9(12)$ $175.9(12)$ $175.2(10)$ $156.8(14)$ $156.8(14)$ $158.5(13)$ $147.6(10)$ $148.9(12)$ $149.3(11)$ $153.6(13)$ $152.9(14)$ $152.9(13)$ $151.8(12)$ $145.4(13)$ $147.0(13)$ $157.8(13)$ $159.9(16)$ $161.6(15)$ $147.4(7)$ $146.3(9)$ $148.4(8)$ $158.6(10)$ $159.5(13)$ $159.5(13)$ $159.6(12)$ $157.7(12)$ $157.7(12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

Table 2 (Continued)

| atom  | sample | X          | У           | Z           | $100 U_{\rm iso}$ (Å <sup>2</sup> ) | Si-O-Si angle (deg) |
|-------|--------|------------|-------------|-------------|-------------------------------------|---------------------|
| O(12) | A120   | 0.2473(7)  | -0.1516(8)  | -0.2558(10) | 4.18(5)                             | 177.0(13)           |
|       | A500   | 0.2496(8)  | -0.1535(9)  | -0.2534(13) | 4.99(5)                             | 178.4(16)           |
|       | B120   | 0.2501(7)  | -0.1485(9)  | -0.2558(12) | 4.24(5)                             | 174.5(13)           |
| O(13) | A120   | 0.3171(6)  | -0.0500(4)  | -0.1895(8)  | 4.18(5)                             | 165.9(9)            |
|       | A500   | 0.3163(7)  | -0.0526(5)  | -0.1874(9)  | 4.99(5)                             | 170.9(11)           |
|       | B120   | 0.3169(7)  | -0.0505(4)  | -0.1896(9)  | 4.24(5)                             | 169.1(11)           |
| O(14) | A120   | 0.0810(6)  | -0.0498(4)  | -0.1675(9)  | 4.18(5)                             | 160.6(9)            |
|       | A500   | 0.0844(7)  | -0.0474(5)  | -0.1619(10) | 4.99(5)                             | 153.6(11)           |
|       | B120   | 0.0820(7)  | -0.0486(5)  | -0.1624(10) | 4.24(5)                             | 155.2(10)           |
| O(15) | A120   | 0.4147(7)  | 0.1298(6)   | -0.3782(10) | 4.18(5)                             | 145.0(10)           |
|       | A500   | 0.4141(9)  | 0.1253(7)   | -0.3870(12) | 4.99(5)                             | 152.5(12)           |
|       | B120   | 0.4157(8)  | 0.1262(6)   | -0.3883(11) | 4.24(5)                             | 150.6(12)           |
| O(16) | A120   | 0.4105(7)  | 0.0023(7)   | -0.4160(9)  | 4.18(5)                             | 160.0(12)           |
|       | A500   | 0.4119(9)  | -0.0013(7)  | -0.4148(11) | 4.99(5)                             | 161.9(15)           |
|       | B120   | 0.4123(8)  | 0.0016(7)   | -0.4184(11) | 4.24(5)                             | 157.8(13)           |
| O(17) | A120   | 0.3977(7)  | -0.1304(7)  | -0.4137(10) | 4.18(5)                             | 155.4(11)           |
|       | A500   | 0.4011(9)  | -0.1339(7)  | -0.4224(11) | 4.99(5)                             | 148.3(12)           |
|       | B120   | 0.3991(8)  | -0.1298(7)  | -0.4145(11) | 4.24(5)                             | 156.1(12)           |
| O(18) | A120   | 0.1912(9)  | 0.1312(5)   | -0.3843(8)  | 4.18(5)                             | 146.8(11)           |
|       | A500   | 0.1883(9)  | 0.1346(6)   | -0.3795(9)  | 4.99(5)                             | 139.8(12)           |
|       | B120   | 0.1915(10) | 0.1323(5)   | -0.3800(9)  | 4.24(5)                             | 144.4(12)           |
| O(19) | A120   | 0.1951(9)  | 0.0012(6)   | -0.4036(8)  | 4.18(5)                             | 163.0(13)           |
|       | A500   | 0.2005(10) | 0.0016(6)   | -0.3982(9)  | 4.99(5)                             | 169.9(15)           |
|       | B120   | 0.1996(9)  | 0.0015(6)   | -0.4024(8)  | 4.24(5)                             | 167.8(13)           |
| O(20) | A120   | 0.1990(9)  | -0.1317(6)  | -0.4217(8)  | 4.18(5)                             | 145.1(9)            |
|       | A500   | 0.1964(11) | -0.1317(7)  | -0.4205(9)  | 4.99(5)                             | 143.0(11)           |
|       | B120   | 0.1998(10) | -0.1325(7)  | -0.4206(9)  | 4.24(5)                             | 144.2(10)           |
| O(21) | A120   | -0.0027(5) | 0.0453(8)   | -0.2132(9)  | 4.18(5)                             | 145.1(9)            |
|       | A500   | -0.0020(6) | 0.0508(10)  | -0.2158(10) | 4.99(5)                             | 141.2(10)           |
|       | B120   | -0.0026(5) | 0.0489(9)   | -0.2136(10) | 4.24(5)                             | 143.4(9)            |
| O(22) | A120   | -0.0017(5) | -0.1579(8)  | -0.2022(11) | 4.18(5)                             | 154.2(10)           |
|       | A500   | -0.0020(7) | -0.1484(10) | -0.2013(11) | 4.99(5)                             | 154.9(12)           |
|       | B120   | -0.0010(6) | -0.1539(9)  | -0.2014(11) | 4.24(5)                             | 156.4(11)           |
| O(23) | A120   | 0.4250(13) | -0.25       | -0.3646(14) | 4.18(5)                             | 138.1(15)           |
|       | A500   | 0.4214(16) | -0.25       | -0.3619(18) | 4.99(5)                             | 143.8(18)           |
|       | B120   | 0.4220(15) | -0.25       | -0.3623(16) | 4.24(5)                             | 141.5(17)           |
| O(24) | A120   | 0.1987(11) | -0.25       | -0.3460(12) | 4.18(5)                             | 148.9(14)           |
|       | A500   | 0.1963(15) | -0.25       | -0.3473(14) | 4.99(5)                             | 149.0(16)           |
|       | B120   | 0.1993(13) | -0.25       | -0.3440(13) | 4.24(5)                             | 150.6(15)           |
| O(25) | A120   | 0.2884(9)  | -0.25       | 0.0689(12)  | 4.18(5)                             | 137.4(12)           |
|       | A500   | 0.2876(11) | -0.25       | 0.0699(14)  | 4.99(5)                             | 139.6(15)           |
|       | B120   | 0.2862(10) | -0.25       | 0.0693(13)  | 4.24(5)                             | 140.4(14)           |
| O(26) | A120   | 0.1155(11) | -0.25       | 0.0596(15)  | 4.18(5)                             | 155.5(15)           |
|       | A500   | 0.1166(13) | -0.25       | 0.0652(17)  | 4.99(5)                             | 148.9(17)           |
|       | B120   | 0.1169(11) | -0.25       | 0.0611(16)  | 4.25(5)                             | 151.5(16)           |

The systematic discrepancy between the cell volume observed by neutrons (present study) and by X-rays<sup>12</sup> [5379.5(8) vs 5375.4(9) Å<sup>3</sup> for sample A120 and 5391.1(9) vs 5387.3(1) Å<sup>3</sup> for sample B120] can be explained by taking into account the larger volume of sample needed for neutron measurements (about 3 cm<sup>3</sup>) with respect to the volume used for XRPD. It is plausible that a small difference in the degree of dehydration has been reached in the two cases and this may be the origin of the small (about 4 Å<sup>3</sup>) volume contraction observed by neutron diffraction. Anyway this small effect bears no consequences on the location of the Ti atoms.

The refined atomic coordinates and isotropic thermal parameters of TS-1 structures are reported in Table 2, together with the mean tetrahedral distances and T-O-T angles, 0 refinement level. The full list of interatomic distances and angles is available from the authors upon request.

Despite the substantial contrast between the Si and the Ti neutron coherent scattering lengths, refinement of the tetrahedral site occupancy factors (sof's) is always critical because of severe correlation between scale factors, sof's, and atomic displacement parameters during the least-squares minimization procedure. The issue is further complicated by the low Ti-content inserted in the MFI framework. To assess the bias imposed on the results by parameter correlation, it was decided to test the presence of Ti on the symmetry-independent T sites by adopting different refinement strategies and then critically compare the results independently derived from each data set. A similar approach was adopted before.<sup>12,43,44</sup>

The MFI structure of each sample was first refined with the T sites fully occupied by Si atoms, refinement 0. Only two independent atomic displacement parameters (adp) were optimized, one for the 12 T sites and another for the 26 oxygen atoms. Once the MFI structure was fully optimized, then the presence of Ti atoms on T sites was checked using five different refinement strategies labeled in the following as methods a-e. Method a: The previously refined isotropic adp for the tetrahedral sites was kept fixed, and the sof's of all T sites were simultaneously refined by assuming full site occupancy (Si + Ti = 1.0) and no limitation on the total Ti content. Method b: The sof's of the sites resulting in a negative Ti content from the previous refinement (method a) were reset to Ti = 0.0 and fixed to Si = 1.0. The sof's of the remaining T sites were refined assuming no limitation on the total Ti content, being adp fixed as in method a. Method c: Starting from the MFI fully optimized structure, the sof's of all T sites were simultaneously refined together with the adp, constraining the total Ti content to

Table 3. Site Occupancy Parameters (Sof's) Obtained by Adopting Different Refinement Strategies<sup>a</sup>

| sample/<br>strategy | T1       | T2       | Т3      | T4       | T5       | Т6      | T7      | T8       | Т9       | T10     | T11     | T12      | Ti<br>(tot.) |
|---------------------|----------|----------|---------|----------|----------|---------|---------|----------|----------|---------|---------|----------|--------------|
| B120 C (a)          | -0.04(2) | 0.01(2)  | 0.03(2) | -0.01(2) | -0.05(2) | 0.17(2) | 0.12(3) | 0.02(2)  | 0.01(2)  | 0.08(2) | 0.21(2) | -0.06(2) |              |
| B120 C (b)          | 0.00(0)  | -0.02(2) | 0.03(2) | 0.00(0)  | 0.00(0)  | 0.14(2) | 0.07(2) | 0.02(2)  | 0.00(2)  | 0.07(2) | 0.21(2) | 0.00(0)  | 4.16         |
| B120 C (c)          | 0.03(2)  | 0.00(2)  | 0.02(2) | 0.02(2)  | 0.01(2)  | 0.05(2) | 0.04(2) | 0.04(2)  | 0.01(3)  | 0.02(2) | 0.07(1) | 0.02(2)  | 2.62         |
| B120 C (d)          | 0.00(0)  | 0.00(0)  | 0.00(0) | 0.00(0)  | 0.00(0)  | 0.09(1) | 0.07(1) | 0.06(2)  | 0.00(0)  | 0.00(0) | 0.11(1) | 0.00(0)  | 2.64         |
| B120 C (e)          | 0.00(0)  | 0.00(0)  | 0.03(2) | 0.00(0)  | 0.00(0)  | 0.09(1) | 0.06(2) | 0.00(0)  | 0.00(0)  | 0.04(2) | 0.11(1) | 0.00(0)  | 2.62         |
| A120 C (a)          | -0.06(2) | 0.04(2)  | 0.12(2) | -0.08(2) | -0.04(2) | 0.19(2) | 0.06(2) | -0.06(2) | -0.10(2) | 0.19(2) | 0.25(2) | 0.00(2)  |              |
| A120 C (b)          | 0.00(0)  | 0.01(1)  | 0.05(2) | 0.00(0)  | 0.00(0)  | 0.16(1) | 0.03(2) | 0.00(0)  | 0.00(0)  | 0.13(2) | 0.22(2) | 0.00(0)  | 3.92         |
| A120 C (c)          | 0.02(2)  | 0.01(2)  | 0.01(2) | 0.01(2)  | 0.01(2)  | 0.04(1) | 0.03(2) | 0.02(2)  | 0.01(2)  | 0.03(2) | 0.05(1) | 0.02(2)  | 2.11         |
| A120 C (d)          | 0.00(0)  | 0.00(0)  | 0.00(0) | 0.00(0)  | 0.00(0)  | 0.08(1) | 0.04(2) | 0.00(0)  | 0.00(0)  | 0.05(2) | 0.09(1) | 0.00(0)  | 2.09         |
| A120 C (e)          | 0.00(0)  | 0.00(0)  | 0.03(2) | 0.00(0)  | 0.00(0)  | 0.08(1) | 0.04(2) | 0.00(0)  | 0.00(0)  | 0.04(2) | 0.08(1) | 0.00(0)  | 2.10         |
| A500 C (a)          | -0.03(2) | 0.02(2)  | 0.07(2) | 0.00(2)  | -0.03(2) | 0.14(2) | 0.13(2) | 0.03(2)  | 0.01(3)  | 0.10(3) | 0.15(2) | -0.02(3) |              |
| A500 C (b)          | 0.00(0)  | 0.00(2)  | 0.08(2) | 0.00(0)  | 0.00(0)  | 0.14(2) | 0.11(2) | 0.04(2)  | -0.00(2) | 0.13(2) | 0.17(2) | 0.00(0)  | 5.36         |
| A500 C (c)          | 0.02(2)  | 0.00(2)  | 0.02(2) | 0.02(2)  | 0.00(3)  | 0.04(2) | 0.03(2) | 0.03(2)  | 0.01(3)  | 0.03(3) | 0.05(2) | 0.02(3)  | 2.10         |
| A500 C (d)          | 0.00(0)  | 0.00(0)  | 0.00(0) | 0.00(0)  | 0.00(0)  | 0.08(1) | 0.06(2) | 0.06(2)  | 0.00(0)  | 0.00(0) | 0.06(2) | 0.00(0)  | 2.10         |
| A500 C (e)          | 0.00(0)  | 0.00(0)  | 0.04(2) | 0.00(0)  | 0.00(0)  | 0.08(1) | 0.06(2) | 0.00(0)  | 0.00(0)  | 0.03(2) | 0.06(2) | 0.00(0)  | 2.10         |

<sup>a</sup> The last column reports the total Ti content (in Ti atoms/unit cell) resulted from the refinement.

**Table 4.** Total Number of Free Parameters (N) and Quality Factors of the Fit for the Different Refinement Strategies Adopted on the Three Samples<sup>*a*</sup>

| sample/<br>strategy | N   | Rwp    | Rp     | reduced χ2 | expected<br>Rwp |
|---------------------|-----|--------|--------|------------|-----------------|
| B120 (a)            | 167 | 0.0207 | 0.0178 | 2.266      | 0.0138          |
| B120 (b)            | 163 | 0.0207 | 0.0178 | 2.268      | 0.0137          |
| B120 (c)            | 169 | 0.0209 | 0.0181 | 2.312      | 0.0137          |
| B120 (d)            | 161 | 0.0208 | 0.0180 | 2.289      | 0.0137          |
| B120 (e)            | 162 | 0.0208 | 0.0180 | 2.294      | 0.0137          |
| A120 (a)            | 167 | 0.0216 | 0.0182 | 2.959      | 0.0126          |
| A120 (b)            | 164 | 0.0217 | 0.0182 | 2.980      | 0.0126          |
| A120 (c)            | 169 | 0.0221 | 0.0187 | 3.121      | 0.0125          |
| A120 (d)            | 161 | 0.0220 | 0.0187 | 3.084      | 0.0125          |
| A120 (e)            | 161 | 0.0220 | 0.0187 | 3.085      | 0.0125          |
| A500 (a)            | 167 | 0.0239 | 0.0202 | 2.159      | 0.0163          |
| A500 (b)            | 165 | 0.0235 | 0.0201 | 2.096      | 0.0162          |
| A500 (c)            | 169 | 0.0241 | 0.0205 | 2.206      | 0.0162          |
| A500 (d)            | 161 | 0.0243 | 0.0208 | 2.227      | 0.0163          |
| A500 (e)            | 162 | 0.0243 | 0.0208 | 2.238      | 0.0162          |

 $^{a}$  For the definition of the quality factors we refer to the GSAS manual.  $^{45}$ 

chemical analysis value, that is 2.09 atoms/cell for samples A120 and A500 and 2.64 atoms/cell for sample B120. Method d: The sof's of only the most populated T sites (above  $1\sigma$  level as resulted from method c) were simultaneously refined together with the adp, constraining again the Ti content to the chemical analysis value. Method e: Again the sof's of only the most populated T sites in method b were simultaneously refined together with the adp, imposing chemical constrains on total Ti value. In methods c—e the starting values for Ti fractions in the T sites are those obtained by equally distributing the total Ti amount among the sites involved. The sof's resulting from the different refinements are listed in Table 3, while the total number of independent parameters, which is refinement dependent, and the fit quality factors for each refinement are reported in Table 4.

## 4. Discussion

Since the total amount of Ti substitution is rather low, a strong correlation between sof's and atomic displacement parameters is always present, so that we cannot be fully confident on the results of a single refinement strategy. The only chance is to critically compare the results obtained by different refinement procedures. We realize that this approach is a very restrictive one and has two main disadvantages: (i) It is extremely timeconsuming. (ii) Some "slightly preferred" sites may be overlooked. On the contrary, it has the important advantage that the accepted sites, if any, are to be considered with confidence.

Table 5 reports the site occupancy factors of the sites mostly populated by Ti atoms, using the corresponding esd as units. Perusal of the table clearly indicates that only a few sites appear to be consistently occupied by Ti atoms within a few standard deviations. Sites T6, T7, and T11 show a substantial amount of Ti atoms in all three samples independently of the adopted refinement strategy. Such sites are always significantly occupied by Ti at the  $2-12\sigma$  level, and even by a limiting of the maximum allowed Ti content (methods c-e), all these sites are occupied at least at the  $2-7\sigma$  level. Site T10 shows an anomalous behavior, displaying a substantial Ti content only for the first two strategies of refinement. When chemical constrains are applied, the Ti fraction in T10 is not significant, and it does not exceed the  $1-2\sigma$  level. T3 and T8 always show a Ti content barely within significance, constantly within the  $1-2\sigma$  level. This behavior seems to be sample dependent, and the two sites are hardly to be considered occupied by Ti atoms. Sites T1, T2, T4, T5, T9, and T12 do not show sign of Ti occupancy in any of the samples as their fraction values are either negative or close to zero within the  $1\sigma$  level. These sites have been excluded from Table 5 as it is assumed that Ti has no preference for such sites.

The fact that the very same sites (T6, T7, T11) are found to contain a significant fraction of Ti atoms, independently of the refinement strategy and independently of the sample preparation and treatment, grants some confidence in the results, which should of course be taken with caution if obtained from an isolated structure refinement. Figure 3 reports the MFI framework, where the positions of sites T6, T7, T11, and T10 have been evidenced.

**4.1. Comparison with Low-Temperature Synchrotron Radiation XRPD Data.** In a recent work<sup>43</sup> we reported the attempt to locate Ti in a high Ti-loaded TS-1 sample using low-temperature XRPD data collected at the BM16 beam line of ESRF. The refinement of the data yields weak evidence that (i) T11 and T10 are probably the most populated sites, (ii) sites T4 and T12 seem not to be occupied at all by Ti, and (iii) nothing significant could be said for the remaining T1, T2, T3, T5, T6, T7, T8, and T9 sites. Given the lower sensibility of X-rays in the discrimination between Si and Ti with respect to neutrons, the above results i and ii are in remarkable agreement with the neutron results presented here.

**4.2.** Comparison with Neutron Diffraction of Ti-Free Silicalite and Hypothesis on the Insertion Mechanism of Ti in the MFI Framework. In an ongoing research work described in several papers<sup>41,42,44,47,48</sup> our group has evidenced that Ti-

 Table 5.
 Comparison of the Refined Values of the Sof of the Most Populated Sites, Measured Using the Corresponding Esd as Unit, as a Function of the Different Refinement Strategies Applied on the Three TS-1 Samples

| sample |          | B120C      |            |           |           |           | A120C      |            |           |           | A500C     |           |           |           |           |           |
|--------|----------|------------|------------|-----------|-----------|-----------|------------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| sites  | strategy | а          | b          | с         | d         | e         | a          | b          | с         | d         | e         | а         | b         | с         | d         | e         |
| T6     |          | $8\sigma$  | $7\sigma$  | $2\sigma$ | $6\sigma$ | 6σ        | $8\sigma$  | $10\sigma$ | 3σ        | $5\sigma$ | 6σ        | $7\sigma$ | $7\sigma$ | $2\sigma$ | $6\sigma$ | 6σ        |
| T7     |          | $4\sigma$  | $3\sigma$  | $2\sigma$ | $5\sigma$ | $3\sigma$ | $3\sigma$  | $\sigma$   | $2\sigma$ | $2\sigma$ | $2\sigma$ | $6\sigma$ | $5\sigma$ | $\sigma$  | $3\sigma$ | $3\sigma$ |
| T11    |          | $10\sigma$ | $10\sigma$ | $5\sigma$ | $7\sigma$ | $7\sigma$ | $12\sigma$ | $11\sigma$ | $3\sigma$ | $6\sigma$ | $6\sigma$ | $7\sigma$ | $8\sigma$ | $2\sigma$ | $3\sigma$ | $3\sigma$ |
| T10    |          | $4\sigma$  | $3\sigma$  | $\sigma$  | 0         | $2\sigma$ | $9\sigma$  | $6\sigma$  | $\sigma$  | $2\sigma$ | $2\sigma$ | $3\sigma$ | $6\sigma$ | $\sigma$  | 0         | $\sigma$  |
| T3     |          | σ          | σ          | $\sigma$  | 0         | σ         | $6\sigma$  | $2\sigma$  | 0         | 0         | $\sigma$  | $3\sigma$ | $4\sigma$ | $\sigma$  | 0         | $2\sigma$ |
| T8     |          | σ          | σ          | $2\sigma$ | 3σ        | 0         | 0          | 0          | $\sigma$  | 0         | σ         | σ         | $2\sigma$ | σ         | 3σ        | 0         |



**Figure 3.** Stick representation of the MFI orthorhombic structure, viewed along the [010] direction. T sites and oxygen atoms have been represented by dark and clear sticks, respectively. The preferentially substituted T6, T7, and T11 sites have been evidenced by big black spheres, while for T10 a smaller black sphere has been used. For clarity, the symmetry operations have not been applied to such spheres.

free silicalite, synthesized according to the original patent for TS-1 (i.e. just without including  $TiO_2$  in the reactants), is a defective material showing a high density of framework Si vacancies resulting in hydroxylated nests. In a previous neutron diffraction study<sup>44</sup> we showed that Si vacancies do not occur randomly and they are preferentially hosted in the Si(6), Si(7), Si(11), and Si(10) sites.

The correspondence of the four sites preferentially hosting the Si vacancies in defective silicalite with those preferentially occupied by Ti atoms in TS-1 is striking. Moreover, it has been shown using several independent characterization techniques<sup>19,22,24–42</sup> (IR, UV–vis, EXAFS, microcalorimetry, and others) that the insertion of the Ti heteroatoms in the MFI lattice has a mineralizing effect, causing the progressive reduction of the framework defects. Figure 4 reports the OH stretching region of the IR spectra of TS-1 samples activated at 120 °C and having increasing Ti content in the range 0 (silicalite) to 2.64 atoms/ unit cell. On the basis of the IR spectra, it is evident that the

<sup>(47)</sup> Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. J. Phys. Chem. **1992**, *96*, 4985. Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M. J. Phys. Chem. **1992**, *96* 4991. Zecchina, A.; Bordiga, S.; Spoto, G.; Marchese, L.; Petrini, G.; Leofanti, G.; Padovan, M.; Otero Areàn, C. J. Chem. Soc., Faraday Trans. **1992**, *88*, 2959. Bordiga, S.; Ricchiardi, G.; Lamberti, C.; Scarano, D.; Spoto, G.; Zecchina, A. Mater. Eng. **1994**, *5*, 197. Marra, G. L.; Tozzola, G.; Leofanti, G.; Padovan, M.; Petrini, G.; Genoni, F.; Venturelli, B.; Zecchina, A.; Bordiga, S.; Ricchiardi, G. *Stud. Surf. Sci. Catal.* **1994**, *84*, 559.





Figure 4. IR spectra, in the OH stretching region, of, from top to bottom, TS-1 samples (full line spectra) with increasing Ti content, from 0 (silicalite, dashed spectrum) to 2.64 atoms/unit cell. All samples have been activated at 120  $^{\circ}$ C.

progressive incorporation of Ti atoms in the framework implies the parallel reduction of the OH band due to internal, defective, Si-OH groups.

The combined crystallographic evidence (obtained on defective silicalites and on TS-1) together with the mineralizing effect of Ti heteroatoms strongly suggests that the incorporation mechanism of the Ti atoms in the MFI framework occurs via the insertion of titanium in defective sites of silicalite. In this context, it is worth reminding that the simulation results of Ricchiardi et al.<sup>34</sup> indicate that the  $[TiO_4]$  and the  $[(OH)_4]$  units substituting regular [SiO<sub>4</sub>] units in the MFI framework of silicalite have a rather similar size. This can explain the tendency of the same sites to host either a defect (Si vacancy) or a Ti heteroatom. This also explains why the amount of incorporated Ti increases to the detriment of internal OH species. The fact that three out of the four preferential T sites, for both Ti insertion and Si vacancy, are adjacent to each other [T(7)-O(35)-T(7)], T(7)-O(34)-T(11), T(10)-O(22)-T(11), T(10)-O(38)-T(10)] implies that, in principle, a fraction of Ti atoms could be located in proximity of a Si vacancy. So, the whole picture emerging from the combined neutron diffraction and IR study (on TS-1 samples in the 0-2.64 Ti atoms/unit cell range) suggests that, beside regular [Ti(OSi)<sub>4</sub>] sites, also defective [Ti(OSi)<sub>3</sub>OH] sites could be significantly present, supporting what is already hypothesized by some authors on the basis of different characterization techniques.19,22,24,25,41,42

**4.3.** Comparison with Data or Calculations on the Insertion of Al(III) and Fe(III) in the MFI Framework. As far as the aluminum insertion in MFI structures (ZSM-5) is concerned,

it may be reminded that the problem has been debated in the theoretical works of Redondo and Hay,<sup>49</sup> Kramer and van Santen,<sup>50</sup> and Ricchiardi and Newsam.<sup>51</sup> In all cases the authors have predicted a uniform distribution of Al. The fact that Al and Si differ by only one electron discards any attempt to directly locate Al by XRPD measurements. Very recently, Olson et al.<sup>52</sup> have highlighted (by Rietveld refinement of synchrotron X-ray diffraction data) that Cs<sup>+</sup> cations in Cs-ZSM-5 are located in three different extraframework sites. From this evidence they conclude that framework sites T4, T7, T10, T11, and T12, being connected with oxygen atoms exhibiting a O–Cs distance less than 3.55 Å, are good candidates for hosting Al atoms. On the contrary, insertion of Al in T2, T8, and T9 sites is less probable, owing to too high O–Cs distances: always higher than 3.90 Å.

Concerning Fe-silicalite, Eckert et al. have presented at the XVIII IUCr Congress (Glasgow, 4-13 Aug 1999) a neutron powder diffraction study indicating that the T8 site is a preferential site for Fe. This result disagrees with the singlecrystal X-ray diffraction study based on data collected at the BM1 line of ESRF by Milanesio et al.<sup>53</sup> In that work sites T9 and T10 are considered as the most probable substitution sites because (i) they are located close to the extraframework Na<sup>+</sup> cation sites, (ii) there is the significant lengthening of the T9-O and T10-O distances, (iii) a residual electron density of 0.34  $e/Å^3$  and of 0.19  $e/Å^3$  is present at sites T9 and T10, respectively, and (iv) they show the maximum anisotropy in the thermal displacement parameters, which is a typical effect related to site substitution. It is interesting to note that T sites showing the minimum T–O distances in Fe–silicalite are T2, T4, T5, and T12,53 and such sites do not show any tendency to incorporate Ti (see Table 4). Unfortunately the present neutron powder data do not support the determination of the T-O distances with a sensibility down to 0.005 Å; as a consequence, no meaningful correlation between sof's and T-O distances can be presented.

### **5.** Conclusions

We report the first direct evidence that Ti atoms are not equally distributed in the MFI structure. The most populated sites are T6, T7, and T11, and weaker evidence has been found for T10. Sites T1, T2, T4, T5, T9, and T12 do not show sign of Ti occupancy, while for the remaining sites there is no conclusive evidence. These results are in good agreement with the indirect finding obtained by microcalorimetry by Bolis et al.<sup>41,42</sup> Four concomitant facts have contributed to this successful experimental result: (i) the preparation of a large volume of high-quality TS-1 samples with the highest possible Ti content, performed in the EniChem laboratories; (ii) the use of neutron diffraction, having a much higher scattering contrast between Ti and Si with respect to X-rays; (iii) the use of a state-of-theart powder instrument (HRPD) having virtually the best presently available resolution in d-space; (iv) the preliminary temperature-dependent X-ray diffraction study performed at the BM16 beam line of ESRF.<sup>43</sup> To avoid any bias during the structure analysis, three TS-1 samples have been measured and five different refinement strategies have been adopted.

The striking coincidence that defective silicalite exhibits the same preferential sites (T6, T7, T11, and T10) for Si vacancies<sup>44</sup>

allows us to speculate that the incorporation mechanism of the Ti atoms in the MFI framework occurs via the insertion of titanium in defective sites of silicalite. This hypothesis agrees with the well-known mineralizing effect that titanium has on the MFI framework, and it is supported by several independent spectroscopic data on both TS-1 and defective silicalite.<sup>19,22,24–42,44,47,48</sup>

Acknowledgment. C.L., S.B., and A.Z. thank the financial support of the MURST COFIN2000 (area 03) coordined by A. Zecchina. The experiment at ISIS (RB 10584) was partially supported by a grant under the CNR-SERC agreement. General financial support was provided by Italian CNR and MURST through research grants to G.A. R. Ibberson kindly helped with neutron data collection. We thank A. N. Fitch for his support during the temperature-dependent XRPD study at the BM16 beam line at the ESRF, which has been an essential step in the preparation of this neutron diffraction experiment. G. Ricchiardi, M. Milanesio, and D. Viterbo are acknowledged for fruitful discussions.

Note Added in Proof: After the submission of our manuscript, an interesting paper appeared in the last 2000 issue of J. *Phys. Chem. B*.<sup>54</sup> The authors report a neutron diffraction study on one Fe-silicate and three TS-1 samples. In agreement with the present results, on TS-1, and with the study of Milanesio et al.,<sup>53</sup> also Hijar et al. report evidence on a nonrandom distribution of both heteroatoms. In particular, the authors suggest T8 as preferential substitution sites for iron in Fe-silicalite and T3, T7, T8, T10, and T12 for titanium in TS-1. As far as TS-1 is concerned, it is evident that the agreement between the results reported in ref 54 and those reported here is only partial (both groups suggest T7 and T10). We can just stress that, in the present work, we give a more detailed description of all problems inherent to the data analysis and we have gone to great lengths to avoid getting biased results. Moreover, it is worth underlining that the whole picture emerging from the combined neutron diffraction and IR study on both TS-1 and defective silicalite strongly validates our conclusions. Hijar et al. also reported a computational study aimed to investigate the differences in energy gain induced by insertion of Ti in the 12 T sites. The results of the computation did not show any correlation between the energetically most stable sites and those claimed to have the higher experimental Ti occupancy. They suggested that the disagreement between computational and experimental results could be due to kinetics of framework formation. However, the quality of the calculations used may also be insufficient to handle such a complex problem. In fact, the computational method adopted (semiempirical PM3) is rather low with respect to the state of the art (see e.g. ref 34). Also the use of a bare cluster model (without embedding) can be questionable in the study of periodic systems. Unfortunately, the reported calculations cannot be reproduced since the parameters used for Ti are not yet available in the literature. In any case, a computed Ti–O distance of 1.85 Å is definitively too large (see Introduction).

**Supporting Information Available:** Three X-ray crystallographic files (CIF) related to the refinement strategies (b) for samples A120, B120, and A500. This material is available free of charge via the Internet at http://pubs.acs.org.

#### JA003657T

<sup>(49)</sup> Redondo, A.; Hay, P. J. J. Phys. Chem. 1993, 97, 11754.

 <sup>(50)</sup> Kramer G. J.; van Santen, R. A. J. Am. Chem. Soc. 1993, 115, 2887.
 (51) Ricchiardi, G.; Newsam, J. M. J. Phys. Chem. B 1997, 101, 9943.

<sup>(52)</sup> Olson, D. H.; Khosrovani, N.; Peters, A. W.; Toby, B. H. J. Phys. Chem. B 2000, 104, 4844.

<sup>(53)</sup> Milanesio, M.; Lamberti, C.; Aiello, R.; Testa, F.; Piana, M.; Viterbo, D. J. Phys. Chem. B 2000, 104, 9951.

<sup>(54)</sup> Hijar, C. A.; Jacubinas, R. M.; Eckert, J.; Henson, N. J.; Hay, P. J.; Ott, K. C. J. Phys. Chem. B 2000, 104, 12157.